

Bio-Strategy Ltd.

Chemwatch: 2449-3 Version No: 5.1

Safety Data Sheet according to the Health and Safety at Work (Hazardous Substances) Regulations 2017

Chemwatch Hazard Alert Code: 3

Issue Date: 20/06/2022 Print Date: 15/10/2023 S.GHS.NZL.EN.E

SECTION 1 Identification of the substance / mixture and of the company / undertaking

Product Identifier

Product name	OXALIC ACID DIHYDRATE
Chemical Name	oxalic acid dihydrate
Synonyms	C2-H6-O6; (COOH)2.2H2O; ethanedioic acid; ethandioic acid; oxalic acid, dihydrate
Proper shipping name	CORROSIVE SOLID, ACIDIC, ORGANIC, N.O.S. (contains oxalic acid dihydrate)
Chemical formula	C2H2O4 C2H2O4.2H2O
Other means of identification	VWRC20555.296, VWRC20562.234, VWRC20562.260, VWRC20562.291
CAS number	6153-56-6

Relevant identified uses of the substance or mixture and uses advised against

As analytical reagent; in calico printing and dyeing; as a general reducing agent; removing paint or varnish, rust or ink stains; manufacture of oxalates; as a condensing agent in organic chemistry. Also used for bleaching straw (hats) and leather; intermediates and dyes; in metal polishes; in indigo dyeing; in purifying methanol; for decolourising pure glycerol; for stabilizing hydrocyanic acid; in ceramics and pigments; in metallurgy as cleanser; in the paper industry; in making glucose from starch. Reducing agent

Details of the manufacturer or supplier of the safety data sheet

Registered company name	Bio-Strategy Ltd.
Address	1/33 Westpoint Drive, Hobsonville Auckland 0618 New Zealand
Telephone	09 9699150
Fax	09 9699151
Website	www.bio-strategy.com
Email	salesnz@bio-strategy.com

Emergency telephone number

Association / Organisation	Bio-Strategy Ltd.	
Emergency telephone numbers	03 353 0199 (National Emergency Contact Centre)	
Other emergency telephone numbers	0800 243 622 (Chemcall)	

SECTION 2 Hazards identification

Classification of the substance or mixture

Considered a Hazardous Substance according to the criteria of the New Zealand Hazardous Substances New Organisms legislation. Classified as Dangerous Goods for transport purposes.

Classification ^[2]	Acute Toxicity (Oral) Category 4, Acute Toxicity (Dermal) Category 4, Skin Corrosion/Irritation Category 1C, Serious Eye Damage/Eye Irritation Category 1, Specific Target Organ Toxicity - Single Exposure (Respiratory Tract Irritation) Category 3
Legend:	1. Classified by Chemwatch; 2. Classification drawn from CCID EPA NZ; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI

Gazetted by EPA New Zealand

6.1D (dermal), 6.1D (oral), 8.2C, 8.3A, 6.1E (respiratory tract irritant)

Label elements

Hazard pictogram(s)

Signal word

Danger

Hazard statement(s)

H302	Harmful if swallowed.
H312	Harmful in contact with skin.
H314	Causes severe skin burns and eye damage.
H335	May cause respiratory irritation.

Supplementary statement(s)

Not Applicable

Precautionary statement(s) Prevention

P260	Do not breathe dust/fume.
P264	Wash all exposed external body areas thoroughly after handling.
P271	Use only outdoors or in a well-ventilated area.
P280	Wear protective gloves, protective clothing, eye protection and face protection.
P270	Do not eat, drink or smoke when using this product.

Precautionary statement(s) Response

P301+P330+P331	IF SWALLOWED: Rinse mouth. Do NOT induce vomiting. If more than 15 mins from Doctor, INDUCE VOMITING (if conscious).			
P303+P361+P353	IF ON SKIN (or hair): Take off immediately all contaminated clothing. Rinse skin with water [or shower].			
P305+P351+P338	F IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.			
P310	Immediately call a POISON CENTER/doctor/physician/first aider.			
P363	Vash contaminated clothing before reuse.			
P301+P312	IF SWALLOWED: Call a POISON CENTER/doctor/physician/first aider if you feel unwell.			
P302+P352	IF ON SKIN: Wash with plenty of water.			
P304+P340	IF INHALED: Remove person to fresh air and keep comfortable for breathing.			
P362+P364	Take off contaminated clothing and wash it before reuse.			

Precautionary statement(s) Storage

	<u>, </u>
P405	Store locked up.
P403+P233	Store in a well-ventilated place. Keep container tightly closed.

Precautionary statement(s) Disposal

P501 Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation.

SECTION 3 Composition / information on ingredients

Substances

CAS No	%[weight]	Name
6153-56-6	>98	oxalic acid dihydrate

Legend:

1. Classified by Chemwatch; 2. Classification drawn from CCID EPA NZ; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI; 4. Classification drawn from C&L; * EU IOELVs available

Mixtures

Issue Date: **20/06/2022**Print Date: **15/10/2023**

Description of first aid measures

Eye Contact	If this product comes in contact with the eyes: Immediately hold eyelids apart and flush the eye continuously with running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. Continue flushing until advised to stop by the Poisons Information Centre or a doctor, or for at least 15 minutes. Transport to hospital or doctor without delay. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.			
Skin Contact	If skin or hair contact occurs: Immediately flush body and clothes with large amounts of water, using safety shower if available. Quickly remove all contaminated clothing, including footwear. Wash skin and hair with running water. Continue flushing with water until advised to stop by the Poisons Information Centre. Transport to hospital, or doctor.			
Inhalation	 If fumes or combustion products are inhaled remove from contaminated area. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. Transport to hospital, or doctor, without delay. Inhalation of vapours or aerosols (mists, fumes) may cause lung oedema. Corrosive substances may cause lung damage (e.g. lung oedema, fluid in the lungs). As this reaction may be delayed up to 24 hours after exposure, affected individuals need complete rest (preferably in semi-recumbent posture) and must be kept under medical observation even if no symptoms are (yet) manifested. Before any such manifestation, the administration of a spray containing a dexamethasone derivative or beclomethasone derivative may be considered. This must definitely be left to a doctor or person authorised by him/her. (ICSC13719) 			
Ingestion	 For advice, contact a Poisons Information Centre or a doctor at once. Urgent hospital treatment is likely to be needed. If swallowed do NOT induce vomiting. If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. Observe the patient carefully. Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious. Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink. Transport to hospital or doctor without delay. 			

Indication of any immediate medical attention and special treatment needed

- ▶ Effective therapy against burns from oxalic acid involves replacement of calcium
- Intravenous oxalic acid is substantially excreted (88% 90%) in the urine within 36 hours.

For acute or short term repeated exposures to strong acids:

- ▶ Airway problems may arise from laryngeal edema and inhalation exposure. Treat with 100% oxygen initially.
- ▶ Respiratory distress may require cricothyroidotomy if endotracheal intubation is contraindicated by excessive swelling
- Intravenous lines should be established immediately in all cases where there is evidence of circulatory compromise.
- Strong acids produce a coagulation necrosis characterised by formation of a coagulum (eschar) as a result of the dessicating action of the acid on proteins in specific tissues.

INGESTION:

- Immediate dilution (milk or water) within 30 minutes post ingestion is recommended.
- ▶ DO NOT attempt to neutralise the acid since exothermic reaction may extend the corrosive injury.
- ▶ Be careful to avoid further vomit since re-exposure of the mucosa to the acid is harmful. Limit fluids to one or two glasses in an adult.
- Charcoal has no place in acid management.
- ▶ Some authors suggest the use of lavage within 1 hour of ingestion.

SKIN:

- Skin lesions require copious saline irrigation. Treat chemical burns as thermal burns with non-adherent gauze and wrapping.
- ▶ Deep second-degree burns may benefit from topical silver sulfadiazine.

EYE:

- Eye injuries require retraction of the eyelids to ensure thorough irrigation of the conjuctival cul-de-sacs. Irrigation should last at least 20-30 minutes. DO NOT use neutralising agents or any other additives. Several litres of saline are required.
- Cycloplegic drops, (1% cyclopentolate for short-term use or 5% homatropine for longer term use) antibiotic drops, vasoconstrictive agents or artificial tears may be indicated dependent on the severity of the injury.
- Steroid eye drops should only be administered with the approval of a consulting ophthalmologist).

[Ellenhorn and Barceloux: Medical Toxicology]

Treatment must be prompt.

- Give immediately by mouth, a dilute solution of any soluble calcium salt; calcium lactate, lime water, finely pulverised chalk or plaster suspended in a large volume of water or milk. Large amounts of calcium are required to inactivate oxalate by precipitating it as the insoluble calcium salt. Do NOT give an emetic drug.
- Perform gastric lavage carefully or not at all if severe mucosal injury is evident. Dilute lime water (calcium hydroxide) makes a good lavage fluid if

Issue Date: 20/06/2022 Print Date: 15/10/2023

frequently to prevent hypocalcaemic tetany. Calcium gluconate (10 m) may also be given intramuscularly every few hours. Calcium compounds are never given subcutaneously; even the intramuscular route is hazardous in infants because of the incidence of sloughing.

- In severe cases parathyroid extract (100 USP units) should be given intramuscularly.
- Morphine may be necessary to control pain.
- Treat shock by cautious intravenous injection of isotonic saline solution. Check for metabolic acidosis and infuse sodium bicarbonate if necessary.
- Watch for oedema of the glottis late formation of oesophageal stricture.
- Useful demulcents by mouth include milk of magnesia, bismuth subcarbonate, and mineral oil.
- Prophylactic and therapeutic measures in anticipation of renal damage.

[GOSSELIN SMITH HODGE: Clinical Toxicology of Commercial Products]

Oxalates are readily metabolized to oxalic acid in the body. Oxalic acid is excreted in the urine at a rate of 8-40 mg/day in healthy normal men and women. About half is excreted as oxalic acid and half as magnesium, calcium or other salts. Ingested oxalic acid is also excreted in the feces. In rats, approximately half of ingested oxalic acid is destroyed by bacterial action and about 25% is excreted unchanged in the feces. In humans, calcium oxalate is deposited in the kidneys as crystals and may be deposited in non-crystalline form, bound to lipid, in the liver and other body tissues.

SECTION 5 Firefighting measures

Extinguishing media

- Water spray or fog.
- Foam.
- Dry chemical powder.
- BCF (where regulations permit).
- Carbon dioxide.

Special hazards arising from the substrate or mixture

Eiro	Incom		1:4.
rire	Incom	patibi	πτν

Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may

Advice for firefighters

Fire Fighting

- Alert Fire Brigade and tell them location and nature of hazard.
- Wear full body protective clothing with breathing apparatus.
- Prevent, by any means available, spillage from entering drains or water course.
- Use fire fighting procedures suitable for surrounding area.
- Do not approach containers suspected to be hot
- Cool fire exposed containers with water spray from a protected location.
- If safe to do so, remove containers from path of fire.
- ▶ Equipment should be thoroughly decontaminated after use.

Fire/Explosion Hazard

At temperatures > 150C, sublimes with partial decomposition and produces toxic fumes of carbon monoxide and formic acid. Combustible

- Slight fire hazard when exposed to heat or flame.
- Acids may react with metals to produce hydrogen, a highly flammable and explosive gas.
- ▶ Heating may cause expansion or decomposition leading to violent rupture of containers.
- May emit acrid smoke and corrosive fumes.

Combustion products include:

carbon monoxide (CO)

carbon dioxide (CO2)

other pyrolysis products typical of burning organic material.

SECTION 6 Accidental release measures

Personal precautions, protective equipment and emergency procedures

See section 8

Environmental precautions

See section 12

Methods and material for containment and cleaning up

Remove all ignition sources.

- Clean up all spills immediately.
- Avoid contact with skin and eyes.
- ▶ Control personal contact with the substance, by using protective equipment.

Minor Spills

- Use dry clean up procedures and avoid generating dust. Place in a suitable, labelled container for waste disposal.
- Drains for storage or use areas should have retention basins for pH adjustments and dilution of spills before disch disposal of material.
- Check regularly for so

Issue Date: **20/06/2022**Print Date: **15/10/2023**

Clear area of personnel and move upwind.

- ▶ Alert Fire Brigade and tell them location and nature of hazard.
- Wear full body protective clothing with breathing apparatus.
- Prevent, by any means available, spillage from entering drains or water course.
- Consider evacuation (or protect in place).
- Stop leak if safe to do so.
- ► Contain spill with sand, earth or vermiculite.
- ▶ Collect recoverable product into labelled containers for recycling.
- ▶ Neutralise/decontaminate residue (see Section 13 for specific agent).
- Collect solid residues and seal in labelled drums for disposal.
- ▶ Wash area and prevent runoff into drains.
- After clean up operations, decontaminate and launder all protective clothing and equipment before storing and re-using.
- ▶ If contamination of drains or waterways occurs, advise emergency services.

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 Handling and storage

Major Spills

Precautions for safe handling

- ▶ Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area.
- ▶ WARNING: To avoid violent reaction, ALWAYS add material to water and NEVER water to material.
- Avoid smoking, naked lights or ignition sources.
- Avoid contact with incompatible materials.
- ▶ When handling, **DO NOT** eat, drink or smoke.
- ▶ Keep containers securely sealed when not in use.
- Avoid physical damage to containers.
- Always wash hands with soap and water after handling.
- Work clothes should be laundered separately. Launder contaminated clothing before re-use.
- Use good occupational work practice.
- ▶ Observe manufacturer's storage and handling recommendations contained within this SDS.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.
- Organic powders when finely divided over a range of concentrations regardless of particulate size or shape and suspended in air or some other oxidizing medium may form explosive dust-air mixtures and result in a fire or dust explosion (including secondary explosions)
- Minimise airborne dust and eliminate all ignition sources. Keep away from heat, hot surfaces, sparks, and flame.
- Safe handling Establish good housekeeping practices.
 - Remove dust accumulations on a regular basis by vacuuming or gentle sweeping to avoid creating dust clouds.
 - Use continuous suction at points of dust generation to capture and minimise the accumulation of dusts. Particular attention should be given to overhead and hidden horizontal surfaces to minimise the probability of a "secondary" explosion. According to NFPA Standard 654, dust layers 1/32 in.(0.8 mm) thick can be sufficient to warrant immediate cleaning of the area.
 - Do not use air hoses for cleaning.
 - Minimise dry sweeping to avoid generation of dust clouds. Vacuum dust-accumulating surfaces and remove to a chemical disposal area. Vacuums with explosion-proof motors should be used.
 - Control sources of static electricity. Dusts or their packages may accumulate static charges, and static discharge can be a source of ignition.
 - Solids handling systems must be designed in accordance with applicable standards (e.g. NFPA including 654 and 77) and other national guidance.
 - $\ ^{\blacktriangleright}$ Do not empty directly into flammable solvents or in the presence of flammable vapors.
 - The operator, the packaging container and all equipment must be grounded with electrical bonding and grounding systems. Plastic bags and plastics cannot be grounded, and antistatic bags do not completely protect against development of static charges.

Empty containers may contain residual dust which has the potential to accumulate following settling. Such dusts may explode in the presence of an appropriate ignition source.

- ► Do NOT cut, drill, grind or weld such containers
- In addition ensure such activity is not performed near full, partially empty or empty containers without appropriate workplace safety authorisation or permit.

Other information

- Store in original containers.
- Keep containers securely sealed.
- ► Store in a cool, dry, well-ventilated area.
- ▶ Store away from incompatible materials and foodstuff containers.
- Protect containers against physical damage and check regularly for leaks.
- ▶ Observe manufacturer's storage and handling recommendations contained within this SDS.

Conditions for safe storage, including any incompatibilities

Plastic pail.

- ► DO NOT use aluminium or galvanised containers
- Check regularly for spills and leaks
- DO NOT use mild steel or galvanised containers
- Lined metal can, lined metal pail/ can.
- Suitable container

Issue Date: 20/06/2022 Print Date: 15/10/2023

- Packing as recommended by manufacturer.
- Check all containers are clearly labelled and free from leaks.

For low viscosity materials

- Drums and jerricans must be of the non-removable head type.
- Where a can is to be used as an inner package, the can must have a screwed enclosure.

For materials with a viscosity of at least 2680 cSt. (23 deg. C) and solids (between 15 C deg. and 40 deg C.):

- Removable head packaging:
- ▶ Cans with friction closures and
- ► low pressure tubes and cartridges

may be used.

Where combination packages are used, and the inner packages are of glass, porcelain or stoneware, there must be sufficient inert cushioning material in contact with inner and outer packages unless the outer packaging is a close fitting moulded plastic box and the substances are not incompatible with the plastic.

Oxalic acid (and its dihydrate):

- react violently with strong oxidisers, bromine, furfuryl alcohol, hydrogen peroxide (90%), phosphorous trichloride, silver
- reacts explosively with chlorites and hypochlorites
- mixture with some silver compounds form explosive salts of silver oxalate
- ▶ is incompatible with caustics and alkalis, urea, alkaline metals and steel
- attacks polyvinyl alcohol and acetal plastics
- Incidents involving interaction of active oxidants and reducing agents, either by design or accident, are usually very energetic and examples of so-called redox reactions.
- Reacts with mild steel, galvanised steel / zinc producing hydrogen gas which may form an explosive mixture with air.
- Segregate from alkalies, oxidising agents and chemicals readily decomposed by acids, i.e. cyanides, sulfides, carbonates.
- Avoid strong bases.

SECTION 8 Exposure controls / personal protection

Control parameters

Occupational Exposure Limits (OEL)

Storage incompatibility

INGREDIENT DATA

Source	Ingredient	Material name	TWA	STEL	Peak	Notes
New Zealand Workplace Exposure Standards (WES)	oxalic acid dihydrate	Oxalic acid	1 mg/m3	2 mg/m3	Not Available	Not Available

Emergency Limits

Ingredient	TEEL-1	TEEL-2	TEEL-3
oxalic acid dihydrate	2 mg/m3	20 mg/m3	500 mg/m3
oxalic acid dihydrate	2 mg/m3	83 mg/m3	500 mg/m3

Ingredient	Original IDLH	Revised IDLH
oxalic acid dihydrate	500 mg/m3	Not Available

Exposure controls

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection.

The basic types of engineering controls are:

Process controls which involve changing the way a job activity or process is done to reduce the risk.

Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure.

- · Local exhaust ventilation is required where solids are handled as powders or crystals; even when particulates are relatively large, a certain proportion will be powdered by mutual friction.
- Exhaust ventilation should be designed to prevent accumulation and recirculation of particulates in the workplace.
- If in spite of local exhaust an adverse concentration of the substance in air could occur, respiratory protection should be considered. Such protection might consist of:
- (a): particle dust respirators, if necessary, combined with an absorption cartridge;
- (b): filter respirators with absorption cartridge or canister of the right type;
- (c): fresh-air hoods or masks
- ▶ Build-up of electrostatic charge on the dust particle, may be prevented by bonding and grounding.
- Powder handling equipment such as dust collectors, dryers and mills may require additional protection measures such as explosion venting.

Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to efficiently remove the contaminant. Continued...

Air Speed:

Appropriate engineering

controls

Issue Date: **20/06/2022**Print Date: **15/10/2023**

direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas
discharge (active generation into zone of rapid air motion)

grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion).

1-2.5 m/s (200-500 ft/min)

Within each range the appropriate value depends on:

Lower end of the range	Upper end of the range
1: Room air currents minimal or favourable to capture	1: Disturbing room air currents
2: Contaminants of low toxicity or of nuisance value only	2: Contaminants of high toxicity
3: Intermittent, low production.	3: High production, heavy use
4: Large hood or large air mass in motion	4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 4-10 m/s (800-2000 ft/min) for extraction of crusher dusts generated 2 metres distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Individual protection measures, such as personal protective equipment

• Safety glasses with unperforated side shields may be used where continuous eye protection is desirable, as in laboratories; spectacles are not sufficient where complete eye protection is needed such as when handling bulk-quantities, where there is a danger of splashing, or if the material may be under pressure.

- Chemical goggles. Whenever there is a danger of the material coming in contact with the eyes; goggles must be properly fitted. [AS/NZS 1337.1, EN166 or national equivalent]
- Full face shield (20 cm, 8 in minimum) may be required for supplementary but never for primary protection of eyes; these afford face protection.
- ▶ Alternatively a gas mask may replace splash goggles and face shields.

Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59].

Skin protection

Eye and face protection

See Hand protection below

► Elbow length PVC gloves

The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application.

The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice.

Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include:

- · frequency and duration of contact,
- · chemical resistance of glove material,
- · glove thickness and
- dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent).

- · When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- · When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- · Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use.
- · Contaminated gloves should be replaced.

As defined in ASTM F-739-96 in any application, gloves are rated as:

- Excellent when breakthrough time > 480 min
- · Good when breakthrough time > 20 min
- · Fair when breakthrough time < 20 min
- · Poor when glove material degrades

For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended.

It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times.

Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, Continued...

manufacturers technical data should always be taken into account to ensure selection of the most appropriate glove for the control of the

Hands/feet protection

	gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of. Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.
Body protection	See Other protection below
Other protection	 Overalls. PVC Apron. PVC protective suit may be required if exposure severe. Eyewash unit. Ensure there is ready access to a safety shower.

Respiratory protection

- · Respirators may be necessary when engineering and administrative controls do not adequately prevent exposures.
- The decision to use respiratory protection should be based on professional judgment that takes into account toxicity information, exposure measurement data, and frequency and likelihood of the worker's exposure ensure users are not subject to high thermal loads which may result in heat stress or distress due to personal protective equipment (powered, positive flow, full face apparatus may be an option).
- Published occupational exposure limits, where they exist, will assist in determining the adequacy of the selected respiratory protection. These may be government mandated or vendor recommended.
- · Certified respirators will be useful for protecting workers from inhalation of particulates when properly selected and fit tested as part of a complete respiratory protection program.
- · Where protection from nuisance levels of dusts are desired, use type N95 (US) or type P1 (EN143) dust masks. Use respirators and components tested and approved under appropriate government standards such as NIOSH (US) or CEN (EU)
- · Use approved positive flow mask if significant quantities of dust becomes airborne.
- · Try to avoid creating dust conditions.

SECTION 9 Physical and chemical properties

Information on basic physical and chemical properties

Appearance	Appearance Colourless, monoclinic tablets, prisms, or granules. Soluble in water, alcohol, ether, glycerol. Insoluble in benzene, chloroform, petroleum ether.		
Physical state	Divided Solid	Relative density (Water = 1)	1.65
Odour	Not Available	Partition coefficient n-octanol / water	Not Available
Odour threshold	Not Available	Auto-ignition temperature (°C)	Not Available
pH (as supplied)	Not Applicable	Decomposition temperature (°C)	> 157
Melting point / freezing point (°C)	101	Viscosity (cSt)	Not Applicable
Initial boiling point and boiling range (°C)	150 sublimes	Molecular weight (g/mol)	126.1
Flash point (°C)	Not Available	Taste	Not Available
Evaporation rate	Not Applicable	Explosive properties	Not Available
Flammability	Not Available	Oxidising properties	Not Available
Upper Explosive Limit (%)	Not Applicable	Surface Tension (dyn/cm or mN/m)	Not Applicable
Lower Explosive Limit (%)	Not Applicable	Volatile Component (%vol)	Not Available
Vapour pressure (kPa)	Not Available	Gas group	Not Available
Solubility in water	Miscible	pH as a solution (1%)	1.3 (0.1 M sol)
Vapour density (Air = 1)	Not Applicable	VOC g/L	1618.65

SECTION 10 Stability and reactivity

Reactivity	See section 7	
Chemical stability	 Contact with alkaline material liberates heat Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur. 	
Possibility of hazardous reactions	See section 7	Continued

Hazardous decomposition products

See section 5

SECTION 11 Toxicological information

Information on toxicological effects

The material can cause respiratory irritation in some persons. The body's response to such irritation can cause further lung damage.

Corrosive acids can cause irritation of the respiratory tract, with coughing, choking and mucous membrane damage. There may be dizziness, headache, nausea and weakness.

Inhalation of dusts, generated by the material during the course of normal handling, may be damaging to the health of the individual.

Inhaled

Inhalation of oxalic acid dusts or vapours can cause ulceration of the linings of the nose and throat, nosebleed, headache and nervousness. The airborne dust behaves as a strong acid producing severe local burns of the linings of the nose and throat. Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled.

If prior damage to the circulatory or nervous systems has occurred or if kidney damage has been sustained, proper screenings should be conducted on individuals who may be exposed to further risk if handling and use of the material result in excessive exposures.

Inhalation of soluble oxalate produces irritation of the respiratory tract. Effects on the body may include protein in the urine, ulceration of the mucous membranes, headache, nervousness, cough, vomiting, severe weight loss, back pain (due to kidney injury) and weakness.

Accidental ingestion of the material may be harmful; animal experiments indicate that ingestion of less than 150 gram may be fatal or may produce serious damage to the health of the individual.

The material can produce chemical burns within the oral cavity and gastrointestinal tract following ingestion.

Ingestion of acidic corrosives may produce burns around and in the mouth, the throat and oesophagus. Immediate pain and difficulties in swallowing and speaking may also be evident.

Ingestion

Oxalic acid is a minor, normal body constituent occurring in blood, kidney, muscle and liver at very low concentrations. Higher concentrations are toxic. Ingestion of 5 grams has caused death within hours. It is a poison which affects the central nervous system and kidney function. Low doses may cause low blood calcium concentration.

Ingestion of low-molecular organic acid solutions may produce spontaneous haemorrhaging, production of blood clots, gastrointestinal damage and narrowing of the oesophagus and stomach entry.

Soluble or solubilised oxides are severely corrosive to the digestive tract, and severe inflammation of the stomach and gut and secondary shock can cause death. Where there are no digestive symptoms (as seen when a dilute solution is swallowed), symptoms in other systems may dominate, including muscle twitching, cramps and central nervous system depression.

Skin contact with the material may be harmful; systemic effects may result following absorption.

The material can produce chemical burns following direct contact with the skin.

Skin contact with acidic corrosives may result in pain and burns; these may be deep with distinct edges and may heal slowly with the formation of scar tissue.

Solutions of 5% to 10% oxalic acid are irritating to the skin after prolonged contact; early gangrene may occur after hand

Skin Contact

immersion in oxalate solutions.

Oxalate ion is an irritant, and may cause skin irritation. Following contact, skin lesions may develop. Open cuts, abraded or irritated skin should not be exposed to this material

Solution of material in moisture on the skin, or perspiration, may increase irritant effects

Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

Eye

Direct eye contact with acid corrosives may produce pain, tears, sensitivity to light and burns. Mild burns of the epithelia generally recover rapidly and completely.

The material can produce chemical burns to the eye following direct contact. Vapours or mists may be extremely irritating. If applied to the eyes, this material causes severe eye damage.

Irritation of the eyes may produce a heavy secretion of tears (lachrymation).

Solutions of low-molecular weight organic acids cause pain and injury to the eyes.

Repeated or prolonged exposure to acids may result in the erosion of teeth, swelling and/or ulceration of mouth lining. Irritation of airways to lung, with cough, and inflammation of lung tissue often occurs. Repeated or long-term occupational exposure is likely to produce cumulative health effects involving organs or biochemical

systems.

Long-term exposure to respiratory irritants may result in airways disease, involving difficulty breathing and related whole-body problems.

Chronic

Based on experience with animal studies, exposure to the material may result in toxic effects to the development of the foetus, at levels which do not cause significant toxic effects to the mother.

Based on experience with similar materials, there is a possibility that exposure to the material may reduce fertility in humans at levels which do not cause other toxic effects.

Long term exposure to high dust concentrations may cause changes in lung function i.e. pneumoconiosis, caused by particles less than 0.5 micron penetrating and remaining in the lung.

Chronic exposure to oxalates may result in circulatory failure or nervous system irregularities, the latter due to calcium binding to oxalate. Prolonged and severe exposure can cause chronic cough, protein in the urine, vomiting, pain in the back, and gradual weight loss and weakness.

Continued...

TOXICITY

AICH

IRRITATION

Chemwatch: 2449-3 Page 10 of 15 Issue Date: 20/06/2022 Version No: 5.1 Print Date: 15/10/2023

OXALIC ACID DIHYDRATE

		Eye: adverse effect observed (irritating) ^[1]
		Skin (rabbit): 500 mg/24 h - mild
		Skin: no adverse effect observed (not irritating) ^[1]
Legend:	Value obtained from Europe ECHA Registered Substances - Acute toxicity 2. Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances	

* Supreme Resources MSDS

Asthma-like symptoms may continue for months or even years after exposure to the material ends. This may be due to a non-allergic condition known as reactive airways dysfunction syndrome (RADS) which can occur after exposure to high levels of highly irritating compound. Main criteria for diagnosing RADS include the absence of previous airways disease in a non-atopic individual, with sudden onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. Other criteria for diagnosis of RADS include a reversible airflow pattern on lung function tests, moderate to severe bronchial hyperreactivity on methacholine challenge testing, and the lack of minimal lymphocytic inflammation, without eosinophilia. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. On the other hand, industrial bronchitis is a disorder that occurs as a result of exposure due to high concentrations of irritating substance (often particles) and is completely reversible after exposure ceases. The disorder is characterized by difficulty breathing, cough and mucus production.

For acid mists, aerosols, vapours

OXALIC ACID DIHYDRATE

Test results suggest that eukaryotic cells are susceptible to genetic damage when the pH falls to about 6.5. Cells from the respiratory tract have not been examined in this respect. Mucous secretion may protect the cells of the airway from direct exposure to inhaled acidic mists (which also protects the stomach lining from the hydrochloric acid secreted there). The material may produce severe irritation to the eye causing pronounced inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.

The material may produce respiratory tract irritation, and result in damage to the lung including reduced lung function. The material may cause skin irritation after prolonged or repeated exposure and may produce on contact skin redness, swelling, the production of vesicles, scaling and thickening of the skin.

Acute Toxicity	~	Carcinogenicity	×
Skin Irritation/Corrosion	✓	Reproductivity	×
Serious Eye Damage/Irritation	✓	STOT - Single Exposure	✓
Respiratory or Skin sensitisation	×	STOT - Repeated Exposure	×
Mutagenicity	×	Aspiration Hazard	×

🗶 – Data either not available or does not fill the criteria for classification

Data available to make classification

SECTION 12 Ecological information

Toxicity

	Endpoint	Test Duration (hr)	Species	Value	Source
oxalic acid dihydrate	EC10(ECx)	24h	Algae or other aquatic plants	220mg/l	4
Legend:	Extracted from 1. IUCLID Toxicity Data 2. Europe ECHA Registered Substances - Ecotoxicological Information - Aquatic Toxicity 4. US EPA, Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data				

Ecotoxicity:

The tolerance of water organisms towards pH margin and variation is diverse. Recommended pH values for test species listed in OECD guidelines are between 6.0 and almost 9. Acute testing with fish showed 96h-LC50 at about pH 3.5

For Oxalic Acid and Oxalate Salts:

Atmospheric Fate: If released to the atmosphere, removal from air via wet deposition, dry deposition, and photolysis is likely to occur.

Terrestrial Fate: If released to soil, oxalic acid at pH 5 - 9 will be in the form of the oxalate ion and is expected to leach in soil. Photolysis and biodegradation are expected to be an important fate processes. It has not been determined whether the oxalate ion will adsorb to sediment or soil more strongly than its estimated Koc value indicates.

Aquatic Fate: If released to water, oxalic acid / oxalates will not volatilize, adsorb to sediment, bioconcentrate in aquatic organisms, oxidize or hydrolyze. Oxalic acid, however, may act as a leaching agent for those metals that form soluble oxalate complexes, including aluminum and iron. Oxalic acid is not expected to bioconcentrate in aquatic organisms. The predominant aquatic fate processes are expected to be photolysis in surface waters, aerobic and anaerobic

Ecotoxicity: Exposure of the general population to oxalic acid / oxalates is expected to occur through consumption of foods in which it is naturally contained, inhalation of contaminated air, and consumption of contaminated groundwater. When assessing the overall exposure to oxalic acid, the residues of ethylene glycol and ethylene oxide must be considered. Metabolites are not expected to contribute significantly to total exposure.

Prevent, by any means available, spillage from entering drains or water courses.

DO NOT discharge into sewer or waterways.

Issue Date: 20/06/2022 Print Date: 15/10/2023

Ingredient	Persistence: Water/Soil	Persistence: Air
oxalic acid dihydrate	LOW	LOW

Bioaccumulative potential

Ingredient	Bioaccumulation
oxalic acid dihydrate	LOW (LogKOW = -1.7365)

Mobility in soil

Ingredient	Mobility
oxalic acid dihydrate	HIGH (KOC = 1.895)

SECTION 13 Disposal considerations

Waste treatment methods

- ▶ Containers may still present a chemical hazard/ danger when empty.
- ▶ Return to supplier for reuse/ recycling if possible.

Otherwise:

- If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill.
- ▶ Where possible retain label warnings and SDS and observe all notices pertaining to the product.

For small quantities

- Cautiously add the material to dry butanol in an appropriate solvent.
- Reaction may be vigorous and exothermic.
- Large volumes of flammable hydrogen may be generated and venting procedures should be conducted in a flame-proof environment.
- ▶ Neutralise the solution with aqueous acid, filter and burn the liquid portion in an approved incinerator.

Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

Product / Packaging disposal

- ► Reduction ► Reuse
- ► Recycling
- Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate. In most instances the supplier of the material should be consulted.

- ► DO NOT allow wash water from cleaning or process equipment to enter drains.
- It may be necessary to collect all wash water for treatment before disposal.
- In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
- ▶ Where in doubt contact the responsible authority.

Recycle wherever possible.

- Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility can be identified.
- Treat and neutralise at an approved treatment plant. Treatment should involve: Mixing or slurrying in water; Neutralisation with soda-lime or soda-ash followed by: burial in a land-fill specifically licensed to accept chemical and / or pharmaceutical wastes or Incineration in a licensed apparatus (after admixture with suitable combustible material)
- Decontaminate empty containers with 5% aqueous sodium hydroxide or soda ash, followed by water. Observe all label safeguards until containers are cleaned and destroyed.

Ensure that the hazardous substance is disposed in accordance with the Hazardous Substances (Disposal) Notice 2017

Disposal Requirements

Packages that have been in direct contact with the hazardous substance must be only disposed if the hazardous substance was appropriately removed and cleaned out from the package. The package must be disposed according to the manufacturer's directions taking into account the material it is made of. Packages which hazardous content have been appropriately treated and removed may be recycled.

The hazardous substance must only be disposed if it has been treated by a method that changed the characteristics or composition of the substance and it is no longer hazardous.

Only dispose to the environment if a tolerable exposure limit has been set for the substance.

Only deposit the hazardous substance into or onto a landfill or sewage facility or incinerator, where the hazardous substance can be handled and treated appropriately.

SECTION 14 Transport information

Land transport (UN)

14.1. UN number or ID number	3261			
14.2. UN proper shipping name	CORROSIVE SOLID, ACIDIC, ORGANIC, N.O.S. (contains oxalic acid dihydrate)			
14.3. Transport hazard class(es)	Class Subsidiary Hazard	8 Not Applicable		
14.4. Packing group	II			
14.5. Environmental hazard	Not Applicable			
14.6. Special precautions for user	Special provisions Limited quantity	274 1 kg		

Air transport (ICAO-IATA / DGR)

14.1. UN number	3261			
14.2. UN proper shipping name	Corrosive solid, acidic, organic, n.o.s. * (contains oxalic acid dihydrate)			
	ICAO/IATA Class	8		
14.3. Transport hazard class(es)	ICAO / IATA Subsidiary Hazard	Not Applicable		
0.000(00)	ERG Code	8L		
14.4. Packing group	II .			
14.5. Environmental hazard	Not Applicable			
	Special provisions		A3 A803	
	Cargo Only Packing Instructions		863	
	Cargo Only Maximum Qty / Pack		50 kg	
14.6. Special precautions for user	Passenger and Cargo Packing Instructions		859	
ioi usei	Passenger and Cargo Maximum Qty / Pack		15 kg	
	Passenger and Cargo Limited Quantity Packing Instructions		Y844	
	Passenger and Cargo Limited Ma	aximum Qty / Pack	5 kg	

Sea transport (IMDG-Code / GGVSee)

14.1. UN number	3261		
14.2. UN proper shipping name	CORROSIVE SOLID, ACIDIC, ORGANIC, N.O.S. (contains oxalic acid dihydrate)		
14.3. Transport hazard class(es)	IMDG Class IMDG Subsidiary Ha	8 zard Not	Applicable
14.4. Packing group	II.		
14.5 Environmental hazard	Not Applicable		
14.6. Special precautions for user	EMS Number Special provisions Limited Quantities	F-A, S-B 274 1 kg	

Issue Date: 20/06/2022 Print Date: 15/10/2023

Product name	Pollution Category	Ship Type
Oxygenated aliphatic hydrocarbon mixture	Z	3

14.7.2. Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code

Product name	Group
oxalic acid dihydrate	Not Available

14.7.3. Transport in bulk in accordance with the IGC Code

Product name	Ship Type
oxalic acid dihydrate	Not Available

SECTION 15 Regulatory information

Safety, health and environmental regulations / legislation specific for the substance or mixture

This substance can be managed under the controls specified in the Transfer Notice or alternatively it may be managed using the conditions specified in an applicable Group Standard.

HSR Number	Group Standard
HSR002491(Proposed)	Additives, Process Chemicals and Raw Materials (Corrosive) Group Standard 2020

Please refer to Section 8 of the SDS for any applicable tolerable exposure limit or Section 12 for environmental exposure limit.

oxalic acid dihydrate is found on the following regulatory lists

New Zealand Approved Hazardous Substances with controls	New Zealand Inventory of Chemicals (NZIoC)
New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals	New Zealand Workplace Exposure Standards (WES)
New Zealand Hazardous Substances and New Organisms (HSNO) Act -	
Classification of Chemicals - Classification Data	

Hazardous Substance Location

Subject to the Health and Safety at Work (Hazardous Substances) Regulations 2017.

Hazard Class	Quantities
Not Applicable	Not Applicable

Certified Handler

Subject to Part 4 of the Health and Safety at Work (Hazardous Substances) Regulations 2017.

Class of substance	Quantities
Not Applicable	Not Applicable

Refer Group Standards for further information

Maximum quantities of certain hazardous substances permitted on passenger service vehicles

Subject to Regulation 13.14 of the Health and Safety at Work (Hazardous Substances) Regulations 2017.

Hazard Class	Gas (aggregate water capacity in mL)	Liquid (L)	Solid (kg)	Maximum quantity per package for each classification
8.2C	120	1	3	

Tracking Requirements

Not Applicable

National Inventory Status

National Inventory	Status	
Australia - AIIC / Australia Non-Industrial Use	Yes	
Canada - DSL	Yes	
Canada - NDSL	No (oxalic acid dihydrate)	
China - IECSC	Yes	Continued
Europe - EINEC / ELINCS /	Yes	Commuea

Issue Date: **20/06/2022**Print Date: **15/10/2023**

National Inventory	Status
Korea - KECI	Yes
New Zealand - NZIoC	Yes
Philippines - PICCS	Yes
USA - TSCA	Yes
Taiwan - TCSI	Yes
Mexico - INSQ	Yes
Vietnam - NCI	Yes
Russia - FBEPH	Yes
	Yes = All CAS declared ingredients are on the inventory
Legend:	No = One or more of the CAS listed ingredients are not on the inventory. These ingredients may be exempt or will require registration.

SECTION 16 Other information

Revision Date	20/06/2022
Initial Date	30/08/2006

SDS Version Summary

Version	Date of Update	Sections Updated
5.1	20/06/2022	Expiration. Review and Update

Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

PC - TWA: Permissible Concentration-Time Weighted Average

PC - STEL: Permissible Concentration-Short Term Exposure Limit

IARC: International Agency for Research on Cancer

ACGIH: American Conference of Governmental Industrial Hygienists

STEL: Short Term Exposure Limit

TEEL: Temporary Emergency Exposure Limit,

IDLH: Immediately Dangerous to Life or Health Concentrations

ES: Exposure Standard
OSF: Odour Safety Factor

NOAEL :No Observed Adverse Effect Level
LOAEL: Lowest Observed Adverse Effect Level

TLV: Threshold Limit Value LOD: Limit Of Detection OTV: Odour Threshold Value BCF: BioConcentration Factors

BEI: Biological Exposure Index

AIIC: Australian Inventory of Industrial Chemicals

DSL: Domestic Substances List NDSL: Non-Domestic Substances List

IECSC: Inventory of Existing Chemical Substance in China

EINECS: European INventory of Existing Commercial chemical Substances

ELINCS: European List of Notified Chemical Substances

NLP: No-Longer Polymers

ENCS: Existing and New Chemical Substances Inventory

KECI: Korea Existing Chemicals Inventory NZIoC: New Zealand Inventory of Chemicals

PICCS: Philippine Inventory of Chemicals and Chemical Substances

TSCA: Toxic Substances Control Act
TCSI: Taiwan Chemical Substance Inventory

INSQ: Inventario Nacional de Sustancias Químicas

NCI: National Chemical Inventory

FBEPH: Russian Register of Potentially Hazardous Chemical and Biological Substances

This document is copyright.

Continued...

Chemwatch: **2449-3**Version No: **5.1**

Page **15** of **15**

OXALIC ACID DIHYDRATE

Issue Date: 20/06/2022 Print Date: 15/10/2023

TEL (+61 3) 9572 4700.